
Simulink® Coder™
Getting Started Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Getting Started Guide
© COPYRIGHT 2011–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only New for Version 8.0 (Release 2011a)
September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)
March 2013 Online only Revised for Version 8.4 (Release 2013a)
September 2013 Online only Revised for Version 8.5 (Release 2013b)
March 2014 Online only Revised for Version 8.6 (Release 2014a)
October 2014 Online only Revised for Version 8.7 (Release 2014b)
March 2015 Online only Revised for Version 8.8 (Release 2015a)
September 2015 Online only Revised for Version 8.9 (Release 2015b)
October 2015 Online only Rereleased for Version 8.8.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 8.10 (Release 2016a)
September 2016 Online only Revised for Version 8.11 (Release 2016b)
March 2017 Online only Revised for Version 8.12 (Release 2017a)
September 2017 Online only Revised for Version 8.13 (Release 2017b)
March 2018 Online only Revised for Version 8.14 (Release 2018a)
September 2018 Online only Revised for Version 9.0 (Release 2018b)
March 2019 Online only Revised for Version 9.1 (Release 2019a)
September 2019 Online only Revised for Version 9.2 (Release 2019b)
March 2020 Online only Revised for Version 9.3 (Release 2020a)
September 2020 Online only Revised for Version 9.4 (Release 2020b)
March 2021 Online only Revised for Version 9.5 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Product Overview
1

Simulink Coder Product Description . 1-2
Key Features . 1-2

Code Generation by Using Simulink Coder . 1-3
Code Generation Technology . 1-3
Code Generation Workflow by Using Simulink Coder 1-3

Validation and Verification for System Development 1-6
V-Model for System Development . 1-6
Types of Simulation and Prototyping in the V-Model 1-6

Target Environments and Applications . 1-8
About Target Environments . 1-8
Types of Target Environments . 1-8
Applications of Supported Target Environments . 1-9

Getting Started Tutorials
2

Generate C Code for a Model . 2-2

Generate C Code by Using Simulink Coder Quick Start Tool 2-4
Generate Code with Quick Start Tool . 2-4
Inspect the Generated Code . 2-5

Verify Generated Executable Program Results . 2-7
Configure Model for Verification . 2-7
Simulate Model and View Results . 2-8
Build and Run Executable Program and View Results 2-9
Compare Simulation and Executable Program Results 2-10

Tune Parameter During Program Execution . 2-14
Configure Data Accessibility and Communication Channel 2-14
Build and Run Executable Program . 2-14
Tune Parameter and Observe Results . 2-14

Deploy Prototype Code and Artifacts . 2-16
Package Generated Code and Artifacts in a Zip File 2-16
Explore Other Options . 2-16

v

Contents

Product Overview

• “Simulink Coder Product Description” on page 1-2
• “Code Generation by Using Simulink Coder” on page 1-3
• “Validation and Verification for System Development” on page 1-6
• “Target Environments and Applications” on page 1-8

1

Simulink Coder Product Description
Generate C and C++ code from Simulink and Stateflow models

Simulink Coder (formerly Real-Time Workshop®) generates and executes C and C++ code from
Simulink models, Stateflow® charts, and MATLAB® functions. The generated source code can be used
for real-time and non-real-time applications, including simulation acceleration, rapid prototyping, and
hardware-in-the-loop testing. You can tune and monitor the generated code using Simulink or run and
interact with the code outside MATLAB and Simulink.

Key Features
• ANSI/ISO C and C++ code and executables for discrete, continuous, or hybrid Simulink and
Stateflow models

• Integer, floating-point, and fixed-point data types using row- and column-major layout
• Code generation for single-rate, multirate, and asynchronous models
• Single-task, multitask, and multicore code execution with or without an RTOS
• External mode simulation for parameter tuning and signal monitoring using XCP, TCP/IP, and

serial communication protocols
• Incremental and parallel code generation builds for large models

1 Product Overview

1-2

Code Generation by Using Simulink Coder
In this section...
“Code Generation Technology” on page 1-3
“Code Generation Workflow by Using Simulink Coder” on page 1-3

Code Generation Technology
MathWorks® code generation technology produces C or C++ code and executable programs for
algorithms. You can write algorithms programmatically by using MATLAB or graphically in the
Simulink environment. You can generate code for MATLAB functions and Simulink blocks that are
useful for real-time and embedded applications. Generated source code and executable programs for
floating-point algorithms match the functional behavior of MATLAB code execution and Simulink
simulations to a high degree of fidelity. Using the Fixed-Point Designer product, you can generate
fixed-point code that provides a bitwise match to model simulation results. Such broad support and
high degree of accuracy are possible because code generation is tightly integrated with the MATLAB
and Simulink execution and simulation engines. The built-in accelerated simulation modes in
Simulink use code generation technology.

Code generation technology and related products provide tooling that you can apply to the V-model
for system development. The V-model is a representation of system development that highlights
verification and validation steps in the development process. For more information, see “Validation
and Verification for System Development” on page 1-6.

To learn about model design patterns that include Simulink blocks, Stateflow charts, and MATLAB
functions, and map to commonly used C constructs, see “Modeling Patterns for C Code” (Embedded
Coder).

Code Generation Workflow by Using Simulink Coder
Use MathWorks code generation technology to generate standalone C or C++ source code for rapid
prototyping, simulation acceleration, and hardware-in-the-loop (HIL) simulation:

• By developing Simulink models and Stateflow charts, and then generating C/C++ code from the
models and charts by using the Simulink Coder product

• By integrating MATLAB code for code generation in MATLAB Function blocks in a Simulink model,
and then generating C/C++ code by using the Simulink Coder product

You can generate code for most Simulink blocks and many MathWorks products on page 1-3. This
figure shows the product workflow for code generation by using Simulink Coder. Other products that
support code generation, such as Stateflow software, are available.

 Code Generation by Using Simulink Coder

1-3

https://www.mathworks.com/products/fixed-point-designer.html

The code generation workflow is a part of the V-model on page 1-6 for system development. The
process includes code generation, code verification, and testing of the executable program in real-
time. For rapid prototyping of a real-time application, typical tasks are:

• Configure the model for code generation in the model configuration set.
• Check the model configuration for execution efficiency using the Code Generation Advisor.
• Generate and view the C code.
• Create and run the executable of the generated code.
• Verify the execution results.
• Build the target executable.
• Run the external model target program.
• Connect Simulink to the external process for testing.
• Use signal monitoring and parameter tuning to further test your program.

Here is a typical workflow for applying the software to the application development process.

1 Product Overview

1-4

For more information on how to perform these tasks, see “Generate C Code for a Model” on page 2-
2.

 Code Generation by Using Simulink Coder

1-5

Validation and Verification for System Development
An approach to validating and verifying system development is the V-model.

V-Model for System Development
The V-model is a representation of system development that highlights verification and validation
steps in the system development process. The left side of the ‘V’ identifies steps that lead to code
generation, including system specification and detailed software design. The right side of the V
focuses on the verification and validation of steps cited on the left side, including software and
system integration.

Depending on your application and its role in the process, you might focus on one or more of the
steps called out in the V-model or repeat steps at several stages of the V-model. Code generation
technology and related products provide tooling that you can apply to the V-model for system
development. For more information about how you can apply MathWorks code generation technology
and related products to the V-model process, see “Types of Simulation and Prototyping in the V-
Model” on page 1-6.

Types of Simulation and Prototyping in the V-Model
Use the V-model for system development for different types of simulation and prototyping, such as
rapid simulation, system simulation, rapid prototyping, and rapid prototyping on target hardware.
This table compares the types of simulation and prototyping identified on the left side of the V-model
diagram shown in “V-Model for System Development” (Embedded Coder).

1 Product Overview

1-6

 Simulation Rapid Simulation System Simulation,
Rapid Prototyping

Rapid Prototyping
on Target Hardware

Purpose Test and validate
functionality of
concept model

Refine, test, and
validate functionality
of concept model in
nonreal time

Test new ideas and
research

Refine and calibrate
design during
development process

Execution
hardware

Development
computer

Development
computer

Standalone executable
runs outside of
MATLAB and Simulink
environments

PC or nontarget
hardware

Embedded computing
unit (ECU) or near-
production hardware

Code efficiency
and I/O latency

Not applicable Not applicable Less emphasis on
code efficiency and
I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component (algorithm
or controller) and
environment (or plant)

Normal mode
simulation in Simulink
enables you to access,
display, and tune data
during verification

Can accelerate
Simulink simulations

Easy to simulate
models of hybrid
dynamic systems that
include components
and environment
models

Ideal for batch or
Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically by
using scripts, without
rebuilding the model

Can connect to
Simulink to monitor
signals and tune
parameters

Might require custom
real-time simulators
and hardware

Might be done with
inexpensive, off-the-
shelf PC hardware
and I/O cards

Might use existing
hardware for less
expense and more
convenience

 Validation and Verification for System Development

1-7

Target Environments and Applications
In this section...
“About Target Environments” on page 1-8
“Types of Target Environments” on page 1-8
“Applications of Supported Target Environments” on page 1-9

About Target Environments
The code generator produces make or project files to build an executable program for a specific
target environment. The generated make or project files are optional. If you prefer, you can build an
executable program for the generated source files by using an existing target build environment,
such as a third-party integrated development environment (IDE). Applications of generated code
range from calling a few exported C or C++ functions on a development computer to generating a
complete executable program that uses a custom build process for custom hardware, in an
environment completely separate from the development computer running MATLAB and Simulink.

The code generator provides built-in system target files that generate, build, and execute code for
specific target environments. These system target files offer varying degrees of support for
interacting with the generated code to log data, tune parameters, and experiment with or without
Simulink as the external interface to your generated code.

Types of Target Environments
Before you select a system target file, identify the target environment on which you expect to execute
your generated code. The most common target environments include environments listed in this
table.

Target Environment Description
Development
computer

The computer that runs MATLAB and Simulink. A development computer is a PC or
UNIX®a environment that uses a non-real-time operating system, such as Microsoft®

Windows® or Linux®b. Non-real-time (general purpose) operating systems are
nondeterministic. For example, those operating systems might suspend code execution
to run an operating system service and then, after providing the service, continue code
execution. Therefore, the executable for your generated code might run faster or
slower than the sample rates that you specified in your model.

1 Product Overview

1-8

Target Environment Description
Real-time simulator A different computer from the development computer. A real-time simulator can be a

PC or UNIX environment that uses a real-time operating system (RTOS), such as:

• Simulink Real-Time system
• A real-time Linux system
• A Versa Module Eurocard (VME) chassis with PowerPC® processors running a

commercial RTOS

The generated code runs in real time. The exact nature of execution varies based on
the particular behavior of the system hardware and RTOS.

A real-time simulator connects to a development computer for data logging, interactive
parameter tuning, and Monte Carlo batch execution studies.

Embedded
microprocessor

A computer that you eventually disconnect from a development computer and run as a
standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital signal
processors (DSPs) to process communication signals to inexpensive 8-bit fixed-point
microcontrollers in mass production (for example, electronic parts produced in the
millions of units). Embedded microprocessors can:

• Use a full-featured RTOS
• Be driven by basic interrupts
• Use rate monotonic scheduling provided with code generation

a. UNIX is a registered trademark of The Open Group in the United States and other countries.
b. Linux is a registered trademark of Linus Torvalds.

A target environment can:

• Have single- or multiple-core CPUs
• Be a standalone computer or communicate as part of a computer network

You can deploy different parts of a Simulink model on different target environments. For example, it
is common to separate the component (algorithm or controller) portion of a model from the
environment (or plant). Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits, such as early verification of a
component.

The following figure shows example target environments for code generated for a model.

Applications of Supported Target Environments
This table lists ways that you can apply code generation technology in the context of the different
target environments.

Application Description
Development Computer

 Target Environments and Applications

1-9

https://en.wikipedia.org/wiki/RTOS
https://www.mathworks.com/products/simulink-real-time.html
https://en.wikipedia.org/wiki/Rate-monotonic_scheduling

Application Description
“Acceleration” Techniques to speed up the execution of

model simulation in the context of the
MATLAB and Simulink environments.
Accelerated simulations are especially useful
when run time is long compared to the time
associated with compilation and checking
whether the target is up to date.

Rapid Simulation Execute code generated for a model in non-
real-time on the development computer, but
outside the context of the MATLAB and
Simulink environments.

Shared Object Libraries (Embedded Coder) Integrate components into a larger system.
You provide generated source code and
related dependencies for building a system in
another environment or in a shared library to
which other code can dynamically link.

“Protect Models to Conceal Contents” Generate a protected model for use by a
third-party vendor in another Simulink
simulation environment.

Real-Time Simulator
Real-Time Rapid Prototyping Generate, deploy, and tune code on a real-

time simulator connected to the system
hardware, for example, physical plant or
vehicle. being controlled. Crucial for
validating whether a component can control
the physical system.

Shared Object Libraries (Embedded Coder) Integrate generated source code and
dependencies for components into a larger
system that is built in another environment.
You can use shared library files for
intellectual property protection.

Hardware-in-the-Loop (HIL) Simulation Run a simulation that pairs physical
hardware, such as a controller, with a virtual
real-time implementation of physical
components on a real-time target computer,
including a plant, sensors, actuators, and the
environment. Use HIL simulations to test and
validate physical hardware and a controller
algorithm by including the effects of
component response in real time to realistic
stimuli. Testing commonly compares the HIL
simulation results to system requirements.
Validation compares HIL simulation results to
user requirements. Often HIL simulations are
referred to as closed-loop simulations due to
the component response to the physical
environment stimuli.

1 Product Overview

1-10

Application Description
Embedded Microprocessor
“Code Generation” (Embedded Coder) From a model, generate code that is

optimized for speed, memory usage,
simplicity, and compliance with industry
standards and guidelines.

“Software-in-the-Loop Simulation” (Embedded Coder) Compile generated or external source code
intended for production and execute the code
as a separate process from the rest of the
Simulink model on your development
computer. Goals include initial source code
testing and verification by comparing SIL and
model simulation results or comparing SIL
results to requirements by using back-to-back
testing. Commonly used with external code
integration, bit-accurate fixed-point math, and
coverage analysis.

“Processor-in-the-Loop Simulation” (Embedded Coder) Cross-compile generated or external source
code intended for production on a
development computer, and then download
and run the object code on a target processor
or an equivalent instruction set simulator.
Goals include verification by comparing PIL
simulation results against model or SIL
simulation results and collecting execution
time profiling data. Commonly used with
external code integration, bit-accurate fixed-
point math, and coverage analysis.

Hardware-in-the-loop (HIL) Simulation Run a simulation that pairs physical
hardware, such as a controller, with a virtual
real-time implementation of physical
components on a real-time target computer,
including a plant, sensors, actuators, and the
environment. Use HIL simulations to test and
validate physical hardware and a controller
algorithm by including the effects of
component response in real time to realistic
stimuli. Testing commonly compares the HIL
simulation results to system requirements.
Validation compares HIL simulation results to
user requirements. Often HIL simulations are
referred to as closed-loop simulations due to
the component response to the physical
environment stimuli.

 Target Environments and Applications

1-11

Getting Started Tutorials

• “Generate C Code for a Model” on page 2-2
• “Generate C Code by Using Simulink Coder Quick Start Tool” on page 2-4
• “Verify Generated Executable Program Results” on page 2-7
• “Tune Parameter During Program Execution” on page 2-14
• “Deploy Prototype Code and Artifacts” on page 2-16

2

Generate C Code for a Model
To generate C or C++ code from Simulink models, Stateflow charts, and MATLAB functions, use the
Simulink Coder product. Use the generated code in applications such as simulation acceleration,
rapid prototyping, and hardware-in-the-loop (HIL) simulations.

If you are new to Simulink Coder or your application code customization requirements are minimal,
you can use graphical tools and default model configuration settings to quickly generate code.

Generating and reviewing code can be as simple as preparing the model for code generation with the
Quick Start tool. Then, using code tools accessible from the Simulink Editor, you can configure data
interfaces, initiate code generation, and verify the generated code.

This tutorial uses example model rtwdemo_secondOrderSystem.

Open the model by entering the model name in the Command Window.

rtwdemo_secondOrderSystem

The model implements a second-order physical system called an ideal mass-spring-damper system.
Gain blocks represent components of the system equation: Mass, Stiffness, and Damping. The
equation for the system is mX" + cX' + kX = f(t).

• m = mass of the system (1.0E-6 kg)
• c = damping ratio (4.0e-4 Ns/m)
• k = spring stiffness (1.0 N/m)
• f(t) = forcing function in the x-direction (N)

2 Getting Started Tutorials

2-2

A Signal Generator block injects a square wave form with an amplitude of 4 and frequency of 20 Hz.
The block uses simulation time as the source of values for the waveform time variable. Because the
model is configured with a fixed-step solver, which is required for code generation, Simulink uses the
same step size for an entire simulation. The consistent step size provides a uniformly sampled
representation of the ideal waveform.

The example model shows how you can use MATLAB Function blocks to integrate existing MATLAB
function code into Simulink models from which you can generate embeddable C code. The MATLAB
function block in the example model integrates a MATLAB function that computes the sum of the
component variables.

The Integrator blocks compute integrals of the MATLAB Function block output with respect to time.
The solver computes the output of the Integrator block at the current time step, by using the current
input value and the value of the state at the previous time step. To support this computational model,
the Integrator block saves its output at the current time step for use by the solver to compute its
output at the next time step. The block also provides the solver with an initial condition for use in
computing the block's initial state at the beginning of a simulation. The default initial condition and
the setting for this example model is 0.

The dashboard blocks, Knob and Dashboard Scope, provide visual tooling for tuning the damping and
monitoring the waveform. The Knob block is connected to the Damping Gain block. The Dashboard
Scope block connects to signals Force: f(t):1 and X.

Use this model to learn how to:

1 Generate code by using the Simulink Coder Quick Start tool.
2 Verify whether generated executable program results match simulation results.
3 Tune a parameter during program execution.
4 Deploy prototype code and artifacts.

To start the tutorial, see “Generate C Code by Using Simulink Coder Quick Start Tool” on page 2-4.

 Generate C Code for a Model

2-3

Generate C Code by Using Simulink Coder Quick Start Tool
Prepare model rtwdemo_secondOrderSystem for code generation and generate C89/C90 compliant
C code by using the Simulink Coder Quick Start tool. Then, inspect the generated code.

Generate Code with Quick Start Tool
The Quick Start tool chooses fundamental code generation settings based on your goals and
application. For example, the Quick Start tool configures the model with a fixed-step solver, which is
required for code generation.

1 Open model rtwdemo_secondOrderSystem by entering the model name in the Command
Window.

2 Save a copy of the model to a writeable location on the MATLAB path.
3 If the C Code tab is not already open, in the Apps gallery, under Code Generation, click

Simulink Coder.
4 Open the Simulink Coder Quick Start tool. On the C Code tab, click Quick Start.

5 Advance through the steps of the Quick Start tool. Each step asks questions about the code that
you want to generate. For this tutorial, use the default settings. The tool validates your selections
against the model and presents the parameter changes required to generate code.

6 In the Generate Code step, apply the proposed changes and generate code from the model by
clicking Next.

2 Getting Started Tutorials

2-4

7 Click Finish. In the Simulink Editor, return to the C Code tab. Configure code generation
customizations, regenerate code, and check results in the code generation report.

Inspect the Generated Code
The code generator creates folder rtwdemo_secondOrderSystem_ert_rtw in your current
working folder and places source code files in that folder. The generated code is in two primary files:
rtwdemo_secondOrderSystem.c and rtwdemo_secondOrderSystem.h. The file
rtwdemo_secondOrderSystem.c contains the algorithm code, including the ODE solver code.
Model data and entry-point functions are accessible to a caller by including
rtwdemo_secondOrderSystem.h. The rtwdemo_secondOrderSystem.h file includes the extern
declarations for block outputs, continuous states, model output, entry points, and timing data.

In your current folder, the code generator creates an slprj/target/_sharedutils folder.. This
folder contains the file rtwtypes.h, which defines standard data types that the generated code uses
by default. This sibling folder contains generated files that can or must be shared between multiple
models.

 Generate C Code by Using Simulink Coder Quick Start Tool

2-5

The code that you generate from a model includes entry-point functions, which you call from
application code, such as an external main program. For a rate-based model, these functions include
an initialization function, an execution function, and, optionally, terminate and reset functions. The
functions exchange data with your application code through a data interface that you control.

1 Open the code generation report. In the C Code tab, click Open Report.
2 Open the Code Interface Report section. Review the entry-point functions that the code

generator produces for the model. For the initialize, execution (step), and terminate functions,
the code generator uses these names:

• rtwdemo_secondOrderSystem_initialize
• rtwdemo_secondOrderSystem_step
• rtwdemo_secondOrderSystem_terminate

The functions have a void-void interface, which means that they do not pass arguments. The
functions gain access to data through shared data structures. Examples of such data include
system-level input and output that the functions exchange with application code.

3 Review the entry-point functions in the generated code. In the left pane of the code generation
report, under Generated Code, click file name rtwdemo_secondOrderSystem.c. Use the
Find field to find instances of the string secondOrderSystem_step. Use the arrows to the right
of the Find field to step through each instance. Do the same for the header file
rtwdemo_secondOrderSystem.h. Then, review code for the initialize and terminate functions.

Next, verify whether model simulation results match generated executable program results.

2 Getting Started Tutorials

2-6

Verify Generated Executable Program Results
Verify whether generated executable program results for the model match simulation results.

Configure Model for Verification
1 Configure the Dashboard Scope block to monitor the values of signals Force: f(t): 1 and X.

Double-click the Dashboard Scope block. In the Block Parameters dialog box, confirm that:

• The block is connected to signals Force: f(t): 1 and X. To connect a Dashboard block to a
signal, in the model canvas, select the signal. In the Block Parameters dialog box, select the
signal name.

• Min is set to -10.
• Max is set to 10.

Apply changes and close the dialog box.
2 Configure the Knob block so that you can use the knob to change the value of the damping gain.

Double-click the Knob block. In the Block Parameters dialog box, confirm that:

• The block is connected to parameter Damping:Gain. To connect a Dashboard block to a
parameter, in the model canvas, select the block that uses the parameter. In the Block
Parameters dialog box, select the parameter name.

• Minimum is set to 200.
• Maximum is set to 600.
• Tick Interval is set to 100.

Apply changes and close the dialog box.
3 Open the Model Configuration Parameters dialog box. On the C Code tab, click Settings.
4 Configure the model such that Simulink and the generated executable program log workspace

data in the Simulation Data Inspector. Click Data Import/Export. Confirm that the model is
configured with these settings:

Parameter Selected Name Set To
Time tout
States xout
Output yout
Signal logging logsout
Data stores dsmout
Record logged workspace data in Simulation Data
Inspector

5 Configure the model for building an executable program. Click Code Generation. Confirm that
parameter “Generate code only” is cleared.

6 Configure and validate the toolchain for building the executable program. Confirm that
parameter “Toolchain” is set to Automatically locate an installed toolchain. Then,
search for and click the Validate Toolchain button. The Validation Report indicates whether the
checks passed.

 Verify Generated Executable Program Results

2-7

7 Configure parameters and signals so that the data is stored in memory and is accessible while
the executable program runs. To efficiently implement a model in C code, you do not allocate
memory for every parameter, signal, and state in the model. If the model algorithm does not
require data to calculate outputs, code generation optimizations eliminate storage for that data.
To allocate storage for the data so that you can access it during prototyping, you disable some
optimizations.

Click Code Generation > Optimization. Confirm that:

• “Default parameter behavior” is set to Tunable. With this setting, block parameters, such as
the Gain parameter of a Gain block, are tunable in the generated code.

• “Signal storage reuse” is cleared. With this setting, the code generator allocates storage for
individual signal lines. While running the executable program, you can monitor the values of
the signals.

8 Configure the code generator to produce nonfinite data (for example, NaN and Inf) and related
operations. Click Code Generation > Interface. Confirm that parameter “Support: non-finite
numbers” is selected.

9 Configure a communication channel. For Simulink® to communicate with an executable program
generated from a model, the model must include support for a communication channel. This
example uses XCP on TCP/IP as the transport layer for a communication channel. Confirm these
parameter settings:

• “External mode” is selected.
• “Transport layer” is set to XCP on TCP/IP. This selection specifies ext_xcp for parameter
Mex-file name.

• “Static memory allocation” is selected. You cannot clear this parameter.
• “Static memory buffer size” specifies the amount of XCP slave memory that is allocated for

signal logging.
10 Disable MAT-file logging. Load the data into the Simulation Data Inspector from the MATLAB

base workspace. Confirm that parameter “MAT-file logging” is cleared.
11 Apply your configuration changes, close the Model Configuration Parameters dialog box, and

save the model.

Simulate Model and View Results
1 From the Simulink Editor, in the Simulation tab, click Run. The clock on the Run button

indicates that simulation pacing is enabled. Simulation pacing slows down a simulation so that
you can observe system behavior. Visualizing simulations at a slower rate makes it easier to
understand the underlying system design and identify design issues while demonstrating near
real-time behavior.

During the simulation, the Dashboard Scope block displays the behavior of signals Force:
f(t):1 and X.

2 Getting Started Tutorials

2-8

2 In the Simulink Editor, in the Simulation tab, click Data Inspector. The Simulation Data
Inspector opens with data from your simulation run imported.

3 Expand the run (if not already expanded). Then, to plot the data, select data signals X and
Force: f(t):1.

4

Leave these results in the Simulation Data Inspector. Later, you compare the simulation data to the
output data produced by the executable program generated from the model.

Build and Run Executable Program and View Results
Build and run the model executable program.

 Verify Generated Executable Program Results

2-9

1 In the Simulink Editor, in the Hardware tab, click Monitor & Tune. Simulink:

a Builds the executable program. During the build process Building appears on the bottom-
left corner of the Simulink Editor window. When the code generation report appears and the
text reads Ready, the process is complete.

• In Windows, the code generator creates and places these files in your current working
folder:

• rtwdemo_secondOrderSystem.exe – Executable program file
• rtwdemo_secondOrderSystem.pdb – Debugging symbols file for parameters and

signals
• In Linux, the code generator creates and places DWARF format debugging information in

the ELF executable program file, rtwdemo_secondOrderSystem, and places the file in
your current working folder.

b Deploys the executable program as a separate process on your development computer.
c Connects the Simulink model to the executable program.
d Runs the model executable program code.

Compare Simulation and Executable Program Results
Use the Simulation Data Inspector to compare the executable program results with the simulation
results.

1 In the Simulation Data Inspector, inspect the results of your executable program run, Run 2:
rtwdemo_secondOrderSystem.

2 Click Compare.
3 Select the data runs that you want to compare. For this example, from the Baseline list, select

Run 1: rtwdemo_secondOrderSystem. From the Compare to list, select Run 2:
rtwdemo_secondOrderSystem.

4 In the upper-right corner of the Simulation Data Inspector, click Compare.

5 The Simulation Data Inspector indicates that the output for X and Force: f(t):1 from the
executable program code is out of tolerance from the simulation data output. To see a plot of the
results for X, under File Comparisons, select the row for X.

2 Getting Started Tutorials

2-10

6 Inspect the comparison plot for Force: f(t):1. Under File Comparisons, select the row for
Force: f(t):1.

 Verify Generated Executable Program Results

2-11

7 Determine whether the numerical discrepancies are significant by specifying an absolute relative
tolerance value. For this tutorial, set Global Abs Tolerance to 1e-12. Then, click Compare. The
comparisons for X and Force: f(t):1 are within tolerance.

2 Getting Started Tutorials

2-12

For more information,about numerical consistency verification and tolerances, see “Numerical
Consistency of Model and Generated Code Simulation Results”.

Next, tune a parameter during program execution.

 Verify Generated Executable Program Results

2-13

Tune Parameter During Program Execution
In this section...
“Configure Data Accessibility and Communication Channel” on page 2-14
“Build and Run Executable Program” on page 2-14
“Tune Parameter and Observe Results” on page 2-14

Interact with a generated executable program while the program runs in nonreal time on your
development computer by tuning a parameter and observing the results.

Configure Data Accessibility and Communication Channel
This part of the tutorial assumes that you have configured your copy of example model
rtwdemo_secondOrderSystem as described in “Configure Model for Verification” on page 2-7.

Build and Run Executable Program
1 To allow time for you to monitor changes that you make to the parameter, set the simulation stop

time to Inf. In the Simulink Editor, click the Hardware tab. In the Stop Time field, set the
simulation stop time to Inf.

2 Click Monitor & Tune. The software:

a Builds the executable program.
b Deploys the program as a separate process on your development computer.
c Connects the Simulink model to the program.
d Runs the model executable program code.

To stop the simulation, in the Hardware tab, click Stop.

Tune Parameter and Observe Results
Experiment with the value of a block parameter during execution. Observe the impact of the change.

While the executable program is simulating on your development computer, in the model canvas, use
the Knob block to change the value of the damping gain. For example, change the value to 600.
Observe:

• The changes in the plot are displayed in the Dashboard Scope block.
• On the Hardware tab, open the Model Data Editor by clicking Tune Parameters.

2 Getting Started Tutorials

2-14

Next, package the generated program code and artifacts for deployment.

 Tune Parameter During Program Execution

2-15

Deploy Prototype Code and Artifacts
Package prototype code and artifacts in a Zip file so that you can share or relocate project results.

Package Generated Code and Artifacts in a Zip File
1 In the Simulink Editor, in the C Code tab, click Share.
2 Under Package Code & Artifacts, specify a file name for the zip file. By default, the code

generator uses the model name and file extension .zip. For this example, use the default name.
3 Click Generate Code and Package. The code generator produces zip file

rtwdemo_secondOrderSystem.zip.
4 Explore the contents of the generated zip file.

Explore Other Options
To explore more ways to customize, verify, and deploy generated rapid-prototyping code and artifacts,
see the information that is listed in this table.

Goal More Information
Configure data accessibility for rapid prototyping “Access Signal, State, and Parameter Data During

Execution”
Model multirate systems “Scheduling”
Create multiple model configuration sets and
share configuration parameter settings across
models

“Model Configuration Sets”

Control how signals are stored and represented
in the generated code

“How Generated Code Stores Internal Signal,
State, and Parameter Data”

Generate block parameter storage declarations
and interface block parameters to your code

“Create Tunable Calibration Parameter in the
Generated Code”

Interface with legacy code for simulation and
code generation

“External Code Integration”

Generate code compatible with C++ “Programming Language”
Create a protected model that hides block and
line information for sharing with a third party

“Model Protection”

Customize the build process “Build Process Customization”

2 Getting Started Tutorials

2-16

	Product Overview
	Simulink Coder Product Description
	Key Features

	Code Generation by Using Simulink Coder
	Code Generation Technology
	Code Generation Workflow by Using Simulink Coder

	Validation and Verification for System Development
	V-Model for System Development
	Types of Simulation and Prototyping in the V-Model

	Target Environments and Applications
	About Target Environments
	Types of Target Environments
	Applications of Supported Target Environments

	Getting Started Tutorials
	Generate C Code for a Model
	Generate C Code by Using Simulink Coder Quick Start Tool
	Generate Code with Quick Start Tool
	Inspect the Generated Code

	Verify Generated Executable Program Results
	Configure Model for Verification
	Simulate Model and View Results
	Build and Run Executable Program and View Results
	Compare Simulation and Executable Program Results

	Tune Parameter During Program Execution
	Configure Data Accessibility and Communication Channel
	Build and Run Executable Program
	Tune Parameter and Observe Results

	Deploy Prototype Code and Artifacts
	Package Generated Code and Artifacts in a Zip File
	Explore Other Options

